
9781119093107-bc03.indd  BC85� September 15, 2015 7:58 PM

BONUS
CHAPTER

3Minecraft+Py+Pi
In this project you’re going to drive your Minecraft world
directly from Python on a Raspberry Pi. This is a big project.
Find a responsible adult (an irresponsible one will do in a
pinch) who can help you.

BC86 Python For Kids For Dummies �

9781119093107-bc03.indd  BC86� September 15, 2015 7:58 PM

You’re going to connect to your Minecraft game on the Raspberry
Pi and change the Minecraft world from your Python interface.
You can change and destroy blocks and teleport your player
places. Then you’ll make a script to clear land and build a castle.

What You Need
You need two things for this project:

✓✓ A Raspberry Pi, which is a small computer that you can plug
into a regular‐sized computer monitor (or a TV).

✓✓ A copy of the Raspbian operating system flashed to an SD
card. Get a copy of Raspbian at www.raspberrypi.org/
downloads. Get instructions for flashing the card at
www.raspberrypi.org/documentation/installation/
installing‐images/README.md.

At the time of this writing, the Pi cost about $35. However, it
doesn’t come with a keyboard, mouse, SD card, monitor, or a
power supply. See Figure 3‑1.

Change the Keyboard
If you press a key and you get the wrong character, Pi is thinking
you have a British keyboard. Changing the keyboard isn’t tough.

1.	Click the console window in the top panel.

2.	When the console opens up, type sudo raspi‐config.

That starts a new application window. In this application you:

•	Use the arrow keys to highlight your choice.

http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/documentation/installation/installing-images/README.md
http://www.raspberrypi.org/documentation/installation/installing-images/README.md

BC87� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC87� September 15, 2015 7:58 PM

•	Press Tab until a button at the bottom like <Select> or
<Finish> is highlighted. If you press Tab again, it’ll go
through your options.

•	Press Enter.

3.	On the first screen of the application, press the down arrow
to highlight 4. Internationalisation Options.

4.	Press Tab once.

The word <Select> should be highlighted in red. See
Figure 3‑2. If not, press Tab until it is highlighted.

Figure 3-1: My Pi is connected to everything.

BC88 Python For Kids For Dummies �

9781119093107-bc03.indd  BC88� September 15, 2015 7:58 PM

5.	Press Enter.

You see three options.

6.	Press the down arrow to Change Keyboard Layout. Press
Tab to highlight <Select>, and press Enter.

Wait. Go get a tasty snack or something. Seriously, this takes
way too long. Finally, you’ll see a list of keyboard
configurations.

Figure 3-2: Setting up the keyboard.

BC89� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC89� September 15, 2015 7:58 PM

7.	Unless you know it’s wrong, just accept the highlighted
entry.

Do that by pressing Tab to highlight <Ok> and pressing Enter.

8.	If English (US) isn’t highlighted, use the arrow key to find
it. Press Tab to highlight <Ok> and press Enter.

If you have the Russian (US, phonetic) version of the English
(US) keyboard, then select that instead. Obvs.

You’re asked a series of detailed questions about your keyboard
layout. No person in their right mind would have any clue.

9.	Accept the first two defaults: Tab to <Ok> and Enter for the
first two. Tab to <No> and press Enter for the third option.

If you’re a layout expert, go to town customizing these options.

10.	Reboot the Pi.

Your new keyboard won’t work until you reboot. Then you’ll
get back the keys you know and love.

Turn Off the Pi
Just so you know for later, here’s how you turn off the Pi:

1.	Make sure you’ve saved all your open files.

2.	Close down the open applications.

3.	Choose Shutdown from the Pi’s menu button.

A dialog box asks which option you want.

4.	Choose Shutdown  ➪  OK.

BC90 Python For Kids For Dummies �

9781119093107-bc03.indd  BC90� September 15, 2015 7:58 PM

Get Going
To use Python to drive a Minecraft world, you need to do the
following:

1.	Start the Pi.

2.	Start Minecraft.

3.	Open your Minecraft world.

4.	Start Python.

5.	Connect to Minecraft from Python. Minecraft must be run-
ning before you try to connect.

Start Minecraft
Plug in everything, make sure you have a working image of
Raspbian on an SD card, that the card is in your Pi, and every-
thing’s booted up.

Using the Pi menu, choose Games  ➪  Minecraft Pi.

1.	Click the Start Game button on the Minecraft Pi Edition intro
screen.

You get an empty Select World screen.

2.	Click the Create New button.

Wait for the Pi to chug along and create a world for you. It
takes a minute or so. See Figure 3‑3.

BC91� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC91� September 15, 2015 7:58 PM

Know How to Close Minecraft
When Minecraft Pi edition starts, it opens a console window
(the black window behind and to the right of the main Minecraft
window).

Don’t exit now. This is what you need to know when it’s time
to exit.

To exit Minecraft, do this:

1.	Press the Escape key.

2.	Click Quit to Title.

3.	Click the close widget (the X) in the corner of the console
window.

Figure 3-3: You’re here for Minecraft Pi.

BC92 Python For Kids For Dummies �

9781119093107-bc03.indd  BC92� September 15, 2015 7:58 PM

Switch Tasks
When you’re inside Minecraft, it captures all of your mouse moves
and key clicks. That’s great if you’re playing the game. It’s not if
you want to use Python. You’ll be trapped inside Minecraft and
unable to get to your Python window (to type your code, for
example).

You have different ways to escape:

✓✓ Press Tab. This is your best option! The mouse cursor is
released so you can pull it to the window you want to work in.

✓✓ Press Alt+Tab to switch between open windows. The window
that you’re switching to has a black border around it.

Pressing the Escape key is a bad idea. Don’t use this method. It
pauses the game, then Python can’t do its thing either.

To get back to Minecraft at any time, just click in the Minecraft
window.

Start Python
Once the Raspberry Pi is up and Minecraft has started, you need
to start a Python programming environment. You’re going to use
Python to connect to Minecraft while the game is running, and
then use Python to tell the game what to do.

Using the Pi menu in the top‐left corner, choose
Programming  ➪  Python 2. (See Figure 3‑4.) Voilà! You have an
IDLE Shell window.

Stay away from Python 3!

BC93� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC93� September 15, 2015 7:58 PM

Connect Python to Minecraft
For Python to drive Minecraft, Minecraft has to be already
running. If it is, then Python can connect to it when you type this:

>>> from mcpi import minecraft

>>> minecraft_connection = minecraft.Minecraft.create()

The mcpi module is on the Raspbian operating system. You work
with the mcpi module during this project. It lets you work with
and drive the Minecraft game. Nothing much seems to happen
when you type these lines, but behind the scenes, Python is mak-
ing a connection into Minecraft for you.

In the IDLE Shell window, type minecraft_connection.
(include the dot). Then use the Tab key to show the attributes of
your new connection.

Figure 3-4: Select Python 2 from menu.

BC94 Python For Kids For Dummies �

9781119093107-bc03.indd  BC94� September 15, 2015 7:58 PM

Hello Minecraft World!
Use the postToChat method to put up a chat line in the world:

>>> minecraft_connection.postToChat("Hello Minecraft World")

See Figure 3‑5.

Are you upset that postToChat doesn’t meet the naming conven-
tions in PEP8? The mcpi module follows the naming conventions
of a different programming language. In Python, postToChat
would be named post_to_chat. You’ll come across different
naming conventions from time to time. Everything still works, it’s
just sometimes hard to follow. No biggie.

Unfortunately, the docstrings for these objects aren’t very helpful.
You can find some help at www.raspberrypi.org/learning/
getting‐started‐with‐minecraft‐pi/worksheet.

The player Object
The player attribute of minecraft_connection can give infor-
mation about the player, such as their current position:

>>> minecraft_connection.player.getPos()

Vec3(0.5,4.0,0.5)

Figure 3-5: Hello Minecraft World.

http://www.raspberrypi.org/learning/getting-started-with-minecraft-pi/worksheet
http://www.raspberrypi.org/learning/getting-started-with-minecraft-pi/worksheet

BC95� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC95� September 15, 2015 7:58 PM

You should see some numbers in the top‐left corner of your
Minecraft screen. Those numbers should be the same as the
numbers reported by the getPos() method.

In Minecraft the player can move in three basic directions —
vertically (up and down), horizontally (left and right), and forward/
backward. That’s why you need three numbers to describe the
position.

You can investigate what happens when you change these coordi-
nates by using the setPos method of the player attribute. To
use the setPos method you, give it three numbers as arguments.
In the next code, you’re going to

1.	Get the player’s position.

2.	Increment the y value.

3.	Set the player’s position using this new y value.

>>> for i in range(10):

 x,y,z = minecraft_connection.player.getPos()

 minecraft_connection.player.setPos(x,y+i,z)

When you run this code, the player in your Minecraft window
should quickly float into the sky. When the code finishes running,
gravity takes over and the player falls back down. From this you
can tell that the second number (y) is the player’s vertical loca-
tion (since it’s the number that you were adding i to).

The y coordinate is especially important because the ground is
down. If you set the y coordinate too low, you end up inside a
block under the ground.

Try it again, changing the x and z coordinates.

BC96 Python For Kids For Dummies �

9781119093107-bc03.indd  BC96� September 15, 2015 7:58 PM

Place Blocks
You can

✓✓ Create a block at a specific location using minecraft_
connection’s setBlock method.

✓✓ Change an existing block to a new type of block.

To create a block, pass x, y, and z coordinates and the id of the
block you want to create. (All of the ids of the blocks are kept in
a separate class called block. To get a block id, import block
from mcpi. When you do, use your Python introspection powers
to get a list of attributes.)

Get the player’s position with the getPos method, then use
setBlock block.DIAMOND_BLOCK to change the block underneath
the player to diamond. setBlock takes x, y, and z coordinates as
well as the id of the block you want to place as arguments:

>>> from mcpi import block

>>> player_position = minecraft_connection.player.getPos()

>>> x,y,z = player_position

>>> minecraft_connection.setBlock(x, y‐1, z, block.DIAMOND_BLOCK)

Click in the Minecraft window to move the player with the mouse.
When you make the player look down, you’ll see a diamond block
like the one in Figure 3‑6. It always changes the block underneath
the player at the time it’s called, even if you started in or moved
to a different position in the world. The script first finds the cur-
rent position of the player, then works out the location of the
block below that position. (Note the y‐1.)

Use dir on the block module that you imported to see the
blocks that you can use:

>>> dir(block)

['AIR', 'BED', 'BEDROCK', 'BEDROCK_INVISIBLE', 'BOOKSHELF',

'BRICK_BLOCK', 'Block', 'CACTUS', 'CHEST', 'CLAY'

'COAL_ORE', 'COBBLESTONE', 'COBWEB', 'CRAFTING_TABLE',

'DIAMOND_BLOCK', 'DIAMOND_ORE', 'DIRT',...

BC97� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC97� September 15, 2015 7:58 PM

To do more than one block at a time, use the setBlocks (not
setBlock) method. It fills a rectangular box. You need to give it
coordinates of two opposite corners of the box you’re creating.
Give it six numbers. This is equal to two sets of x, y, z coordi-
nates (which is equal to the location of two points in Minecraft
space). Any two points define a box. The box is filled with the
specified block type.

Try it:

>>> minecraft_connection.setBlocks(x, y‐1, z, x+3, y+2,

z+3, block.DIAMOND_BLOCK)

Who turned out the lights?!

You can’t see anything because the blocks were put right over the
player. Use the setPos method to move your player up:

>>> minecraft_connection.player.setPos(x, y+2, z)

The cube you created has four blocks to each side. This is
because of the zero basing of the blocks. Don’t change the first
three numbers, but try different combinations of the second
group of three numbers to get a feel for how the boxes are being

Figure 3-6: Diamonds on the soles of your shoes.

BC98 Python For Kids For Dummies �

9781119093107-bc03.indd  BC98� September 15, 2015 7:58 PM

created. You can destroy blocks by changing them to air (use
block.AIR instead of block.DIAMOND_BLOCK). Try varying a
single number at a time.

If you change these blocks to air, the cube extends below ground.
You also fall into it. You can set blocks to air to clear an area.

>>> minecraft_connection.setBlocks(x, y‐1, z, x+3, y+2,

z+3, block.AIR)

For some blocks, like wool, you can specify additional information
by passing extra data (an integer) to setBlock. For wool blocks,
the integer represents the color. (It means different things for dif-
ferent blocks.) You can do this by using the withData method of
the wool block.

Make sure you were looking at where the diamond cube was if
you want to see this:

>>> import time

>>> for i in range(32):

 minecraft_connection.postToChat("Color: %s"%i)

 minecraft_connection.setBlock(x+1, y‐1, z, block.WOOL.

withData(i))

 time.sleep(0.5)

This cycles through the available colors. There are only 16 and
they repeat, but you don’t know this until you try it. You can use
colored wool to decorate stuff.

Blow Things Up
Can you set an enormous cube of TNT and blow it up? In short,
yes. But beware! The Pi isn’t a very powerful computer. The more
TNT you set, the harder Pi has to work. You’ll get a giant explo-
sion in slooooowwwww mooooottiiiioooon

BC99� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC99� September 15, 2015 7:58 PM

You can set activated TNT by using withData(1). Then, if you
hit a TNT block, it explodes. (Run!) See Figure 3‑7.

>>> minecraft_connection.player.setPos(x‐2,y,z‐2)

>>> minecraft_connection.setBlocks(x, y‐1, z, x+3, y+2,

z+3, block.TNT.withData(1))

Save Your Scripts
You can save your Python scripts on the Pi pretty much the same
way as you can on your other computer.

The Pi runs a version of Linux, which has different conventions
than Windows. On Linux, IDLE will start in a directory called
 /home/pi. Just save your scripts into this directory. On Windows
it was called C:\Python27. You can see that Linux uses / in its
file paths, but Windows uses \.

You code in your scripts in the same way that you code in the
IDLE Shell window. The only thing you need to remember is that
Minecraft needs to be running and not paused when you run your
script. Otherwise your script will fail.

Figure 3-7: This is a small cube of TNT. Yes, small.

BC100 Python For Kids For Dummies �

9781119093107-bc03.indd  BC100� September 15, 2015 7:58 PM

Build a Castle
Same old same old here. Set up your files.

1.	Create a file called build_castle.py.

2.	In that file, import minecraft and blocks from the mcpi
module.

from mcpi import minecraft, block

3.	Set up a mine_craft connection as you did earlier.

if __name__ == "__main__":

 minecraft_connection = minecraft.Minecraft.create()

4.	Send a Hello Minecraft World message.

 message = "Hello out there! We have a connection"

 minecraft_connection.postToChat(message)

5.	Create a cube of blocks at the player’s location.

 minecraft_connection.setBlocks(x, y, z,

 x+2, y+2, z+2,

 block.GRASS)

6.	Move the player back so it isn’t trapped in the blocks.

 minecraft_connection.player.setPos(x‐1, y, z‐1)

Your code should look something like this:

"""

build_castle.py

Build a castle in Minecraft on the Pi!

 Brendan

Possible do list:In order to build the castle I'm going to:

#TODO: level out an area for the castle to go on

#TODO: build a tower

#TODO: add battlements with merlonations

#TODO: moat?

"""

BC101� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC101� September 15, 2015 7:58 PM

Imports Section

from mcpi import minecraft, block

Functions Section

Main Section

if __name__ == "__main__":

 minecraft_connection = minecraft.Minecraft.create()

 x, y, z = minecraft_connection.player.getPos()

 message = "Hello out there! We have a connection"

 minecraft_connection.postToChat(message)

 minecraft_connection.setBlocks(x, y, z,

 x+2, y+2, z+2,

 block.GRASS)

 minecraft_connection.player.setPos(x‐1, y, z‐1)

Run it like you would normally run a script from IDLE — press F5.
Remember that Minecraft must be running first for it to work.

I get something like Figure 3‑8 when I run this.

Figure 3-8: Running my first MineCraft Pi Python script.

BC102 Python For Kids For Dummies �

9781119093107-bc03.indd  BC102� September 15, 2015 7:58 PM

The code in this project has very long names for its methods and
variables. I used long names so that they would be more meaning-
ful. Every once in a while, a line is too long and there is no sensi-
ble way to split it. These lines are wrapped in this project. Where
you see code that doesn’t line up with anything, it’s actually part
of the previous line. Type it and the previous line as a single line.

Here’s an example. Don’t add this anywhere:

 self.restore_blocks[location] = self.minecraft_

connection.getBlockWithData(location)

Create a Castle Class and an Interface
The castle will have different pieces that work according to where
the player is. Your script will put up a Tkinter interface. When
you are where you want the castle, click the button on your
Tkinter window.

You’ll use the grid method for laying out your widgets.

1.	Delete the stuff you’ve just done, other than the Import sec-
tion. Import Tk and Button from Tkinter.

from Tkinter import Tk, Button

2.	Create a Castle class, inheriting from object.

Classes Section

class Castle(object):

 """object for interfacing with minecraft to create and

destroy

 blocks to create a castle"""

3.	Create a View class, also inheriting from object. You don’t
need a Frame, because you’re going to be using the grid
geometry manager.

class View(object):

 """Interface to Castle object"""

BC103� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC103� September 15, 2015 7:58 PM

4.	In the Castle constructor accept a parent argument and
store it in an attribute. Create a view, passing the parent to
the view.

 def __init__(self, parent=None):

 self.parent = parent

 self.view = View(parent)

5.	In the View constructor, save a copy of the parent it
receives.

6.	Create two Buttons — button_drop and button_clear.

button_drop should have the text 'drop', and button_
clear should have the text 'clear'.

 def __init__(self, parent=None):

 self.parent = parent

 self.button_drop = Button(self.parent, text='drop')

 self.button_clear = Button(self.parent, text='clear')

7.	Arrange button_drop by using button_drop.
grid(row=0, column=0).

Arrange button_clear in the same way, but in column 1.

 self.button_drop.grid(row=0, column=0)

 self.button_clear.grid(row=0, column=1)

8.	In the Main section, create a root window.

 root = Tk()

9.	Instantiate a Castle (a class you make in the next step),
passing the root window that you’ve created as the parent.

10.	Call mainloop on the root window and run Tkinter’s
mainloop.

 castle = Castle(parent=root)

 root.mainloop()

BC104 Python For Kids For Dummies �

9781119093107-bc03.indd  BC104� September 15, 2015 7:58 PM

The code now looks like this:

"""

build_castle.py

Build a castle in Minecraft on the Pi!

Brendan

Possible do list:In order to build the castle I'm going to:

#TODO: level out an area for the castle to go on

#TODO: build a tower

#TODO: add battlements with merlonations

#TODO: moat?

"""

Imports Section

from mcpi import minecraft, block

from Tkinter import Tk, Button

Constants Section

Classes Section

class Castle(object):

 """object for interfacing with minecraft to create and destroy

 blocks to create a castle"""

 def __init__(self, parent=None):

 self.parent = parent

 self.view = View(parent)

 self.minecraft_connection = minecraft.Minecraft.create()

class View(object):

 """Interface to Castle object"""

 def __init__(self, parent=None):

 self.parent = parent

 self.button_drop = Button(self.parent, text='drop')

 self.button_clear = Button(self.parent, text='clear')

 self.button_drop.grid(row=0, column=0)

 self.button_clear.grid(row=0, column=1)

Functions Section

BC105� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC105� September 15, 2015 7:58 PM

Main Section

if __name__ == "__main__":

 root = Tk()

 castle = Castle(parent=root)

 root.mainloop()

The connection to Minecraft is basically acting like a place to
store data. You’re communicating with the Minecraft server appli-
cation. That application is communicating with its own view —
the screen where you normally play Minecraft.

When you run this code, the buttons don’t do anything because
they’re not hooked up (bound) to any methods yet.

Create Methods to Drop
and Clear Blocks

Now create methods for dropping and clearing blocks. It’s too bad
mcpi doesn’t tell you which direction that the player is facing.
You’re just going to place a block at the position with an x coordi-
nate 1 greater than the player’s x coordinate.

Drop a block by creating a GRASS block (or whatever block you
want) at the location and clear it by setting it to AIR.

1.	Create a method called drop_block that takes:

•	A minecraft Vec3 object (call it drop_location),
defaulting to None

•	A kind of block defaulting to block.GRASS (or whatever
you want)

 def drop_block(self, drop_location=None, block=block.GRASS):

 """ drop a block of block (a 2 tuple of block id

and data)

 at drop_location (a Vec3 or 3 tuple). If None, use

player

 position at x+1."""

BC106 Python For Kids For Dummies �

9781119093107-bc03.indd  BC106� September 15, 2015 7:58 PM

2.	In the method, test if the Vec3 received is None.

If so, set it to the player’s current position, but with the
x coordinate increased by 1.

 if drop_location is None:

 x,y,z = self.minecraft_connection.player.getPos()

 drop_location = minecraft.Vec3(x+1, y, z)

3.	Call Minecraft’s setBlock method passing drop_location
and block as arguments.

 self.minecraft_connection.setBlock(drop_location, block)

4.	Create a method called clear_block that takes a Vec3 object
as an argument called clear_location, defaulting to None.

Call drop_block passing clear_location and block.AIR.

 def clear_block(self, clear_location=None):

 """ set the block at clear_location (Vec3 or 3 tuple)

 to Air. If None, use player position at x+1"""

 self.drop_block(clear_location, block.AIR)

5.	In Castle’s constructor, hook up the buttons to these
new methods.

 # Hook up callbacks

 self.view.button_drop.config(command=self.drop_block)

 self.view.button_clear.config(command=self.clear_block)

Now it’s time to test your code.

6.	Find a flat place to stand so you’ll notice a block when
it’s dropped.

7.	Click the drop button.

You may need to click it twice.

If the block doesn’t appear, go back to the Minecraft window
and move the character around to see if it’s there. When it’s in

BC107� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC107� September 15, 2015 7:58 PM

view, test the clear and drop buttons by clicking them to
create/destroy the block.

It’s often a good idea to print out the name of the callback from in
the callback when you first write it. If the callback is correctly
bound, then the print will show up in the IDLE Shell window. This
helps you debug by proving that the callback is hooked up the
right way. Once you know the callback is correctly hooked up,
comment out the print statement.

Here are the two new methods:

 def drop_block(self, drop_location=None, block=block.GRASS):

 """ drop a block of block (a 2 tuple of block id and data)

 at drop_location (a Vec3 or 3 tuple). If None, use player

 position at x+1."""

 if drop_location is None:

 x,y,z = self.minecraft_connection.player.getPos()

 drop_location = minecraft.Vec3(x+1, y, z)

 self.minecraft_connection.setBlock(drop_location, block)

 def clear_block(self, clear_location=None):

 """ set the block at clear_location (Vec3 or 3 tuple)

 to Air. If None, use player position at x+1"""

 self.drop_block(clear_location, block.AIR)

This is the code to hook them up in the constructor:

 # Hook up callbacks

 self.view.button_drop.config(command=self.drop_block)

 self.view.button_clear.config(command=self.clear_block)

Show Your Axes
To know where things are going when you create them, you need
to know what direction you’re facing. As I mention, the Python
interface on the Pi will tell you where the player is, but not which
way they’re facing, so there’s no way to be sure of putting a block
in front of the player from the Python end. However, if you know

BC108 Python For Kids For Dummies �

9781119093107-bc03.indd  BC108� September 15, 2015 7:58 PM

which way is which, then you can make sure that the player is fac-
ing the right way before you drop the block (or, later, castle).

With colored wool, create some coordinates that you can display
and remove with a button.

1.	Create two constants: WOOL_COLORS and AXIS_COLORS.

You’ll use these constants to give a different color to each axis.
That way you can tell the x axis from the z axis.

Constants Section

WOOL_COLORS = {"white":0,

 "orange":1,

 "pink":2,

 "light_blue":3,

 "yellow":4,

 "light_green":5,

 "light_red":6,

 "dark_gray":7,

 "light_gray":8,

 "middle_blue":9,

 "violet":10,

 "dark_blue":11,

 "brown":12,

 "dark_green":13,

 "red":14,

 "black":15}

AXIS_COLORS = [block.WOOL.withData(WOOL_COLORS['white']),

 block.WOOL.withData(WOOL_COLORS['black']),

 block.WOOL.withData(WOOL_COLORS['light_green']),

 block.WOOL.withData(WOOL_COLORS['yellow'])]

Axis colors are positive x, negative x, positive z, negative z

2.	In Castle, create methods called show_axes and
hide_axes.

 def show_axes(self):

 """ Display colored blocks at x and z each axis

directions

 to allow player to orient themself.

 """

BC109� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC109� September 15, 2015 7:58 PM

 def hide_axes(self):

 """ Remove axes previously placed. Restore original

blocks if

 saved """

3.	In Castle’s constructor, create an empty dictionary called
restore_blocks.

 self.restore_blocks = {}

4.	In View’s constructor, create a button to hook up to each of
these new methods.

 self.button_show_axes = Button(self.parent, text='Axes +')

 self.button_show_axes.grid(row=1, column=0)

 self.button_hide_axes = Button(self.parent, text='Axes ‐')

 self.button_hide_axes.grid(row=1, column=1)

5.	In Castle’s constructor, hook up the buttons you just
created.

 self.view.button_show_axes.config(command=self.show_axes)

 self.view.button_hide_axes.config(command=self.hide_axes)

6.	In your new show_axes method, get the player’s
position as x, y, z.

 x, y, z = self.minecraft_connection.player.getPos()

7.	Create a list with the elements [(x+2,y+2,z),
(x‐2,y+2,z), (x,y+2,z+2), (x, y+2,z‐2)].

 locations = [(x+2, y+2, z), (x‐2, y+2, z),

 (x, y+2, z+2), (x, y+2, z‐2)]

These indicate your plus and minus x and z axes centered at
the player’s location. Please note that each of the elements is a
tuple.

Tuples are like lists only you can’t change them once you make
them. The order of the elements in a tuple should be
meaningful.

BC110 Python For Kids For Dummies �

9781119093107-bc03.indd  BC110� September 15, 2015 7:58 PM

8.	Set your restore_blocks dictionary to be empty.

 self.restore_blocks = {}

9.	Enumerate each of the four locations in your list.

As you do, use the getBlockWithData method to get the
information of the block at that location.

10.	Store that data in the dictionary using location as a key.

This restores the blocks that were originally there.

11.	Get the corresponding block type from AXIS_COLORS and
call drop_block, passing the location and block type to that
method.

 for i, location in enumerate(locations):

 self.restore_blocks[location] = self.minecraft_

 connection.getBlockWithData(location)

 block = AXIS_COLORS[i]

 self.drop_block(location, block)

12.	In hide_axes, run through each item in the restore_
blocks dictionary.

13.	Call drop_block, passing the key as the location and the
value as the block.

 for location, block in self.restore_blocks.items():

 self.drop_block(location, block)

The consolidated changes from this code follow.

In the Constants section:

Constants Section

WOOL_COLORS = {"white":0,

 "orange":1,

 "pink":2,

 "light_blue":3,

 "yellow":4,

 "light_green":5,

 "light_red":6,

BC111� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC111� September 15, 2015 7:58 PM

 "dark_gray":7,

 "light_gray":8,

 "middle_blue":9,

 "violet":10,

 "dark_blue":11,

 "brown":12,

 "dark_green":13,

 "red":14,

 "black":15}

AXIS_COLORS = [block.WOOL.withData(WOOL_COLORS['white']),

 block.WOOL.withData(WOOL_COLORS['black']),

 block.WOOL.withData(WOOL_COLORS['light_green']),

 block.WOOL.withData(WOOL_COLORS['yellow'])]

Axis colors are positive x, negative x, positive z, negative z

In Castle’s constructor:

 self.restore_blocks = {}

And a little later (make sure it’s after self.view has been
instantiated):

 self.view.button_show_axes.config(command=self.show_axes)

 self.view.button_hide_axes.config(command=self.hide_axes)

In the View’s constructor:

 self.button_show_axes = Button(self.parent, text='Axes +')

 self.button_show_axes.grid(row=1, column=0)

 self.button_hide_axes = Button(self.parent, text='Axes ‐')

 self.button_hide_axes.grid(row=1, column=1)

In the Castle class I added these new methods:

 def show_axes(self):

 """ Display colored blocks at x and z each axis directions

 to allow player to orient themself.

 """

BC112 Python For Kids For Dummies �

9781119093107-bc03.indd  BC112� September 15, 2015 7:58 PM

 x, y, z = self.minecraft_connection.player.getPos()

 locations = [(x+2, y+2, z), (x‐2, y+2, z),

 (x, y+2, z+2), (x, y+2, z‐2)]

 self.restore_blocks = {}

 for i, location in enumerate(locations):

 self.restore_blocks[location] = self.minecraft_

 connection.getBlockWithData(location)

 block = AXIS_COLORS[i]

 self.drop_block(location, block)

 def hide_axes(self):

 """ Remove axes previously placed. Restore original blocks if

 saved """

 for location, block in self.restore_blocks.items():

 self.drop_block(location, block)

Landscape (More Like Terraform)
To build a castle, you need to

✓✓ Clear some area. You can set blocks to block.AIR to do this.

✓✓ Create some ground on which the castle rests. You can use
block.BEDROCK to do this.

You can create blocks that float in air. If you do, then any area
underneath your castle will be a cave or cavern.

I’m going to put the castle on a slab of bedrock blocks. You can
choose the filler material if you like — and it can’t be air!

Create a set_blocks Function
I don’t like the setBlocks interface because it needs absolute
(not relative) coordinates. With relative coordinates you can basi-
cally say “Build a box starting at x, y, z and with a width of w, a
height of h, and a length of l.” In absolute coordinates you have to
say “Build a box starting at x, y, z and ending at x+w, y+h, z+l,”
which you’d need to do each time.

BC113� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC113� September 15, 2015 7:58 PM

Instead you’re going to write a method to use relative
coordinates.

1.	Create a function called set_blocks. Make it accept
the following:

•	x, y, and z coordinates for a starting block

•	Values w, h, l for the width, height, and length

•	A block id

•	Block data

 def set_blocks(self, x, y, z, w, h, l, block_id,

block_data):

 """ Set blocks as a box of width, height and

 length w, h and l starting at location x, y z

 """

2.	Add w to x, h to y and l to z, then call setBlocks

 x2, y2, z2 = x+w, y+h, z+l

 self.minecraft_connection.setBlocks(x, y, z,

 x2, y2, z2,

 block_id,

block_data)

3.	Add a button in View’s constructor called button_test.

 self.button_test=Button(self.parent, text="Test")

 self.button_test.grid(row=2,column=0)

4.	Create a new method called test_button.

 def test_button(self):

 """ A short method to test whether the new

 set_blocks method is working"""

5.	Hook up the new button to the new method
in Castle’s constructor:

 self.view.button_test.config(command=self.test_button)

BC114 Python For Kids For Dummies �

9781119093107-bc03.indd  BC114� September 15, 2015 7:58 PM

6.	Add a player attribute to the Castle so you can get the
position a little more easily.

This goes in the constructor after minecraft_connection
has been initialized.

 self.player = self.minecraft_connection.player

7.	In your test_button method, get the current position of
the player.

 x, y, z = self.player.getPos()

8.	Call set_blocks with the player’s position as the first three
arguments (add 1 to the x value to create the blocks away
from the player) and 9, 1, 4 as the next three values.

9.	Pass block.GLASS as the block type and 0 as the block
data.

 w, h, l = (9, 1, 4)

 self.set_blocks(x+1, y, z, w, h, l, block.GLASS, 0)

When you run the program, use the coordinate axes function
you just wrote to test and make sure you’re facing the right
direction (the grey wool block) before pressing the Test but-
ton. When you create the blocks, they’re transparent. (They’re
made of glass!) Press the S key to step back and see them
more clearly.

I added this code to Castle’s constructor:

 self.view.button_test.config(command=self.test_button)

I also added these two new methods:

 def set_blocks(self, x, y, z, w, h, l, block_id, block_data):

 """ Set blocks as a box of width, height and

 length w, h and l starting at location x, y z

 """

BC115� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC115� September 15, 2015 7:58 PM

 x2, y2, z2 = x+w, y+h, z+l

 self.minecraft_connection.setBlocks(x, y, z,

 x2, y2, z2,

 block_id, block_data)

 def test_button(self):

 """ A short method to test whether the new

 set_blocks method is working"""

 self.player = self.minecraft_connection.player

 x, y, z = self.player.getPos()

 w, h, l = (9, 1, 4)

 self.set_blocks(x+1, y, z, w, h, l, block.GLASS, 0)

In View’s constructor I added a Test button:

 self.button_test = Button(self.parent, text="Test")

 self.button_test.grid(row=2, column=0)

You can use your set_blocks method to quickly clear an area
where you want to build something. If you want to add a single
layer (of grass, for example), set the height to 0.

Try to avoid using the letter l (the letter after k) as the name of a
variable. It looks too much like a 1 (the number after 0). I use it
here as a compromise because of line length problems.

Make Towers and Walls
You can use your new set_blocks method to create towers and
walls. For each, you create the base of the structure, a battlement
at the top, and crenellations in the battlement.

A crenel is a hole at the top of the wall (on either side of the cre-
nel is a merlon). Battlements are crenellated so defenders can fire
down from behind cover.

Creating the towers and walls is somewhat boring addition and
subtraction. I give you the source code to create a tower and a
wall and then I explain them to you.

BC116 Python For Kids For Dummies �

9781119093107-bc03.indd  BC116� September 15, 2015 7:58 PM

First, I created some constants in the Constants section to make
life easier (BLOCK_AIR and BLOCK_STONE) and some to avoid
magic numbers (TOWER_HEIGHT and TOWER_WIDTH):

BLOCK_AIR = block.AIR

BLOCK_STONE = block.STONE

Castle Constants

TOWER_HEIGHT = 12

TOWER_WIDTH = 4

I added a new method, make_tower that, you know, makes a
tower.

 def make_tower(self,

 location=None,

 tower_height=TOWER_HEIGHT,

 tower_width=TOWER_WIDTH,):

 """Make a Tower at location (or player pos)"""

 if location is None:

 x, y, z = self.player.getPos()

 x = x+1 # So player is outside tower.

 else:

 x, y, z = location

 w, h, l = tower_width, tower_height, tower_width

 block_data = 0

 # Tower

 self.set_blocks(x, y, z,

 w, h, l, BLOCK_STONE, block_data)

 # Battlement at top

 w, h, l = tower_width+2, 2, tower_width+2

 self.set_blocks(x‐1, y+tower_height, z‐1,

 w, h, l, BLOCK_STONE, block_data)

 # Hollow out battlement

 w, h, l = tower_width, 1, tower_width

 self.set_blocks(x, y+tower_height+1, z,

 w, h, l, BLOCK_AIR, block_data)

BC117� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC117� September 15, 2015 7:58 PM

 # Add further hollows for merlonations/crenellations

 # cut three times on x and three times on z:

 for i in range(3):

 self.set_blocks(x+2*i, y+tower_height+2, z‐1,

 0, 0, 6, BLOCK_AIR, block_data)

 self.set_blocks(x‐1, y+tower_height+2, z+2*i,

 6, 0, 0, BLOCK_AIR, block_data)

 # Hollow out tower

 w, h, l = tower_width‐2, tower_height+1, tower_width‐2

 self.set_blocks(x+1, y, z+1, w, h, l, BLOCK_AIR, block_data)

The method make_tower takes location as an argument (so
that it knows where in the world you want the tower to be made)
defaulting to None. If a location is provided to the function, it’ll
use it. If not, it uses the player’s current location (section # Set
location). Look at Figure 3‑9 and the comments in the code.

It makes a column of stone (section # Tower). Then, at the top of
that column, it makes a box of stone three blocks high and two
blocks wider than the column it’s on (so it has an overhang of one

Figure 3-9: Building a tower.

BC118 Python For Kids For Dummies �

9781119093107-bc03.indd  BC118� September 15, 2015 7:58 PM

block on each side). This becomes the battlement (section #
Battlement at top).

The center of the battlement is scooped out by creating a box of
air (section # Hollow out battlement). Then you cut out
three parallel lines in each direction to create the crenellations
(section # Add further hollows for merlonations/
crenellations). Finally, you scoop out a hole down the center
of the tower (section # Hollow out tower).

If it’s hollow you can put a ladder in there.

In addition, you change the Main section so that it doesn’t open
up the Tk window while you’re testing. The new Main section
looks like this:

Main Section

if __name__ == "__main__":

root = Tk()

castle = Castle(parent=root)

root.mainloop()

 castle = Castle()

 castle.make_tower()

This sped things up a little since the Pi has trouble opening the Tk
window. If you want to test within the GUI, you could hook up
these new methods to the Test button you created.

These methods create a heap of blocks. To test them, you’ll want
an easy way to clear them. You can either

✓✓ Write some code to clear them (using setBlocks and setting
them to block.AIR) in a separate file.

✓✓ Clear them through the IDLE Shell window (using the com-
mand history).

I imported the Castle class and used its methods to clear space
(sample Shell excerpt):

>>> import build_castle as bc

>>> c = bc.Castle()

BC119� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC119� September 15, 2015 7:58 PM

>>> x,y,z = c.player.getPos()

>>> x,y,z

(‐16.7641, 7.0, ‐53.9972)

>>> c.set_blocks(x,y,z,x+90,y+60,z+90, bc.block.AIR,0)

To make the walls, I created these constants (to avoid magic num-
bers) and put them in the Constants section. The length and
height of the wall can be whatever, but these numbers give a wall
with good proportions.

WALL_LENGTH = 40

WALL_HEIGHT = 9

WALL_WIDTH = 2

This is the code that creates a wall (also a method in Castle):

 def make_wall(self,

 location=None, orientation="x",

 wall_length=WALL_LENGTH,

 wall_height=WALL_HEIGHT,

 wall_width=WALL_WIDTH):

 """ make a wall at location (or player pos) parallel to

 x axis by default otherwise parallel to z axis """

 block_data = 0

 if location is None:

 x, y, z = self.player.getPos()

 x = x+1 # So player is outside wall.

 else:

 x, y, z = location

 w, h, l = wall_length, wall_height, wall_width # wall base

 w1, h1, l1 = wall_length, 2, wall_width+2 # battlement

 w2, h2, l2 = wall_length, 1, wall_width # hollow out battlement

 xoffset, zoffset = 0, ‐1

 if orientation != "x": # swap dimensions

 w, l = l, w

 w1, l1 = l1, w1

BC120 Python For Kids For Dummies �

9781119093107-bc03.indd  BC120� September 15, 2015 7:58 PM

 w2, l2 = l2, w2

 xoffset, zoffset = zoffset, xoffset

 # Wall support

 self.set_blocks(x, y, z, w, h, l, BLOCK_STONE, block_data)

 # Add Battlement

 self.set_blocks(x+xoffset, y+wall_height, z+zoffset,

 w1, h1, l1, BLOCK_STONE, block_data)

 # hollow out battlement

 self.set_blocks(x, y+h+1, z,

 w2, h2, l2, BLOCK_AIR, block_data)

 # create crenellations/merlonations

 if orientation == "x":

 for i in range(1, wall_length, 2):

 self.set_blocks(x+i, y+h+h1, z‐1,

 0, 0, 4, BLOCK_AIR, block_data)

 else:

 for i in range(1, wall_length, 2):

 self.set_blocks(x‐1, y+h+h1, z+i,

 4, 0, 0, BLOCK_AIR, block_data)

Towers are the same when you turn them around, so you don’t
need to say where the tower is facing. Walls are different. A wall
going left‐right is different from one going forward‐backward.

make_wall needed a parameter to control which way the wall
faces (that is, either the x or z direction). When I put the code
together, I tested it on the x direction only. After it was working,
I added some code to swap the widths and lengths around to turn
the wall sideways. Then I tested that it worked in the z direction.

The wall has two main parts — a battlement along the top and the
main body of the wall supporting it. The main body is pretty sim-
ple, it’s just a box (section # Wall support). Adding a battle-
ment (section # Add battlement) is like the battlement at the
top of the tower, except that it’s a rectangle.

BC121� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC121� September 15, 2015 7:58 PM

To add crenellations, slice every second block along the length of
the battlement. How you do this depends on the wall’s orienta-
tion, so handle these cases separately (section # create
crenellations/merlonations).

Finally, I changed the code in the Main section to test make_wall
in both the x and z directions:

 castle = Castle()

castle.make_wall()

 castle.make_wall(orientation="z")

The line castle.make_wall() is commented out because
I tested both the x direction (default) or the z direction — only
one at a time. See Figure 3‑10.

Make the Castle
To make the castle, build four towers and four walls. Clear out an
area big enough to fit the castle onto. Again, you mostly use addition
and subtraction to work out which blocks to change. Because you
can make towers and walls by giving a location, call make_tower and
make_wall four times each, with different parameters each time.

Figure 3-10: Building a wall.

BC122 Python For Kids For Dummies �

9781119093107-bc03.indd  BC122� September 15, 2015 7:58 PM

First, constants in the Constants section. They’re for working out

✓✓ How much stuff to clear. (It needs to be at least as big as the
largest side of the castle — length of wall plus width of the
battlements of two towers.)

✓✓ How much bedrock to put under the castle.

✓✓ How far it is from one tower/wall to another. (You can calcu-
late this or figure it out by trial and error.)

An interesting extension would be to change the code so you
could specify the length of a wall. The code would build a castle
to that dimension.

CLEAR_SPACE = 60

CASTLE_SIDE = 51

TOWER_OFFSET = 46

BEDROCK_HEIGHT = 8

BEDROCK_DEPTH = 10

Here’s the source code to make the castle. I comment on it after
the code:

 def make_castle(self, location=None):

 """ Create a castle at the specified location, or at the

player's

 position if none specified"""

 if location is None:

 x, y, z = self.player.getPos()

 x = x+1 # So player is outside

 else:

 x, y, z = location

 Vec3 = minecraft.Vec3 #convenience assignment

 # Terraforming!

 # Clear the area

 self.set_blocks(x‐(TOWER_WIDTH+1), y, z‐(TOWER_WIDTH+1),

 CLEAR_SPACE, CLEAR_SPACE, CLEAR_SPACE,

 block.AIR.id, 0)

BC123� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC123� September 15, 2015 7:58 PM

 # lay down some bedrock underneath the castle

 self.set_blocks(x, y‐BEDROCK_DEPTH, z,

 CASTLE_SIDE, BEDROCK_HEIGHT, CASTLE_SIDE,

 block.BEDROCK.id, 0)

 # one layer of cobblestone

 self.set_blocks(x, y‐1, z,

 CASTLE_SIDE, 0, CASTLE_SIDE,

 block.COBBLESTONE.id, 0)

 # create all the towers at the location

 self.make_tower(Vec3(x, y, z))

 # now make another two towers ‐ each at the end of each wall

 # assumes length of wall is 40 (actually 41 bc of 0 basing)

 # and width of towers is 4 (actually 5)

 self.make_tower(Vec3(x+TOWER_OFFSET, y, z))

 self.make_tower(Vec3(x, y, z+TOWER_OFFSET))

 # make last tower is diagonally opposite the first

 self.make_tower(Vec3(x+TOWER_OFFSET, y, z+TOWER_OFFSET))

 # now make two walls to attach to the first tower.

 # Starting point of each wall needs to be offset

 # by (width of tower)+1 blocks in the x axis for the

 # first wall and in the z axis for the second wall.

 self.make_wall(Vec3(x+TOWER_WIDTH+1, y, z+1))

 self.make_wall(Vec3(x+1, y, z+TOWER_WIDTH+1),

 orientation="z")

 # repeat the walls above, but offset them by the

 # tower offset to the z and x axes

 # This is so that the end of the wall meets the side

 # of the tower

 self.make_wall(Vec3(x+TOWER_WIDTH+1, y, z+1+TOWER_OFFSET))

 self.make_wall(Vec3(x+1+TOWER_OFFSET, y, z+TOWER_WIDTH+1),

 orientation="z")

Since I was going to be using a few minecraft.Vec3 objects, I
assigned the object to the name Vec3 to save a bit on typing. First
I cleared out the area where the castle is going to be built.

BC124 Python For Kids For Dummies �

9781119093107-bc03.indd  BC124� September 15, 2015 7:58 PM

Mountain in the way? No problem! I also lay bedrock and a cobble-
stone floor underneath. This removes any underground ores, so
you might prefer to skip this step (section # Terraforming!).

Then I built the four towers (# Build towers). The towers
are spaced 46 blocks apart from each other. This number comes
from the length of 40 for the walls, plus an allowance for the
widths of a tower at each end. Finally, I make the four walls to
connect the towers.

If you change the length of the walls or the width of the towers,
update this number as well.

You can improve your castle by adding a roof, ladders in the tow-
ers, and access to the towers from the top of the walls.

I also changed the Main section to test the method:

 castle = Castle()

 castle.make_castle()

The Complete Code
Here is the complete code, with the GUI reinstated. To do this
I put a new Castle button where the old Test button was and
hooked it up to the make_castle method. I also restored the
previous Main section.

"""

build_castle.py

Build a castle in Minecraft on the Pi!

Brendan

Possible do list:In order to build the castle I'm going to:

#DONE: level out an area for the castle to go on

#DONE: build a tower

#DONE: add battlements with merlonations

#TODO: moat? NAH

"""

BC125� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC125� September 15, 2015 7:58 PM

Imports Section

from mcpi import minecraft, block

from Tkinter import Tk, Button

Constants Section

WOOL_COLORS = {"white":0,

 "orange":1,

 "pink":2,

 "light_blue":3,

 "yellow":4,

 "light_green":5,

 "light_red":6,

 "dark_gray":7,

 "light_gray":8,

 "middle_blue":9,

 "violet":10,

 "dark_blue":11,

 "brown":12,

 "dark_green":13,

 "red":14,

 "black":15}

AXIS_COLORS = [block.WOOL.withData(WOOL_COLORS['white']),

 block.WOOL.withData(WOOL_COLORS['black']),

 block.WOOL.withData(WOOL_COLORS['light_green']),

 block.WOOL.withData(WOOL_COLORS['yellow'])]

Axis colors are positive x, negative x, positive z, negative z

BLOCK_AIR = block.AIR

BLOCK_STONE = block.STONE

Castle Constants

TOWER_HEIGHT = 12

TOWER_WIDTH = 4

WALL_LENGTH = 40

WALL_HEIGHT = 9

WALL_WIDTH = 2

CLEAR_SPACE = 60

CASTLE_SIDE = 51

TOWER_OFFSET = 46

BC126 Python For Kids For Dummies �

9781119093107-bc03.indd  BC126� September 15, 2015 7:58 PM

BEDROCK_HEIGHT = 8

BEDROCK_DEPTH = 10

Classes Section

class Castle(object):

 """object for interfacing with minecraft to create and destroy

 blocks to create a castle"""

 def __init__(self, parent=None):

 self.parent = parent

 self.view = View(parent)

 self.restore_blocks = {}

 # Hook up callbacks

 self.view.button_drop.config(command=self.drop_block)

 self.view.button_clear.config(command=self.clear_block)

 self.view.button_show_axes.config(command=self.show_axes)

 self.view.button_hide_axes.config(command=self.hide_axes)

 self.view.button_castle.config(command=self.make_castle)

 self.minecraft_connection = minecraft.Minecraft.create()

 self.player = self.minecraft_connection.player

 def drop_block(self, drop_location=None, block=block.GRASS):

 """ drop a block of block (a 2 tuple of block id and data)

 at drop_location (a Vec3 or 3 tuple). If None, use player

 position at x+1."""

 if drop_location is None:

 x, y, z = self.minecraft_connection.player.getPos()

 drop_location = minecraft.Vec3(x+1, y, z)

 self.minecraft_connection.setBlock(drop_location, block)

 def clear_block(self, clear_location=None):

 """ set the block at clear_location (Vec3 or 3 tuple)

 to Air. If None, use player position at x+1"""

 self.drop_block(clear_location, block.AIR)

 def show_axes(self):

 """ Display colored blocks at x and z each axis directions

 to allow player to orient themself.

 """

BC127� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC127� September 15, 2015 7:58 PM

 x, y, z = self.minecraft_connection.player.getPos()

 locations = [(x+2, y+2, z), (x‐2, y+2, z),

 (x, y+2, z+2), (x, y+2, z‐2)]

 self.restore_blocks = {}

 for i, location in enumerate(locations):

 self.restore_blocks[location] = self.minecraft_

connection.getBlockWithData(location)

 block = AXIS_COLORS[i]

 self.drop_block(location, block)

 def hide_axes(self):

 """ Remove axes previously placed. Restore original blocks if

 saved """

 for location, block in self.restore_blocks.items():

 self.drop_block(location, block)

 def set_blocks(self, x, y, z, w, h, l, block_id, block_data):

 """ Set blocks as a box of width, height and

 length w, h and l starting at location x, y z

 """

 x2, y2, z2 = x+w, y+h, z+l

 self.minecraft_connection.setBlocks(x, y, z,

 x2, y2, z2,

 block_id, block_data)

 def test_button(self):

 """ A short method to test whether the new

 set_blocks method is working"""

 self.player = self.minecraft_connection.player

 x, y, z = self.player.getPos()

 w, h, l = (9, 1, 4)

 self.set_blocks(x+1, y, z, w, h, l, block.GLASS, 0)

 def make_tower(self,

 location=None,

 tower_height=TOWER_HEIGHT,

 tower_width=TOWER_WIDTH,):

 """Make a Tower at location (or player pos)"""

BC128 Python For Kids For Dummies �

9781119093107-bc03.indd  BC128� September 15, 2015 7:58 PM

 if location is None:

 x, y, z = self.player.getPos()

 x = x+1 # So player is outside tower.

 else:

 x, y, z = location

 w, h, l = tower_width, tower_height, tower_width

 block_data = 0

 # Tower

 self.set_blocks(x, y, z,

 w, h, l, BLOCK_STONE, block_data)

 # Battlement at top

 w, h, l = tower_width+2, 2, tower_width+2

 self.set_blocks(x‐1, y+tower_height, z‐1,

 w, h, l, BLOCK_STONE, block_data)

 # Hollow out battlement

 w, h, l = tower_width, 1, tower_width

 self.set_blocks(x, y+tower_height+1, z,

 w, h, l, BLOCK_AIR, block_data)

 # Add further hollows for merlonations/crenellations

 # cut three times on x and three times on z:

 for i in range(3):

 self.set_blocks(x+2*i, y+tower_height+2, z‐1,

 0, 0, 6, BLOCK_AIR, block_data)

 self.set_blocks(x‐1, y+tower_height+2, z+2*i,

 6, 0, 0, BLOCK_AIR, block_data)

 # Hollow out tower

 w, h, l = tower_width‐2, tower_height+1, tower_width‐2

 self.set_blocks(x+1, y, z+1, w, h, l, BLOCK_AIR, block_data)

 def make_wall(self,

 location=None, orientation="x",

 wall_length=WALL_LENGTH,

 wall_height=WALL_HEIGHT,

 wall_width=WALL_WIDTH):

 """ make a wall at location (or player pos) parallel to

 x axis by default otherwise parallel to z axis """

 block_data = 0

BC129� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC129� September 15, 2015 7:58 PM

 if location is None:

 x, y, z = self.player.getPos()

 x = x+1 # So player is outside wall.

 else:

 x, y, z = location

 w, h, l = wall_length, wall_height, wall_width # wall base

 w1, h1, l1 = wall_length, 2, wall_width+2 # battlement

 w2, h2, l2 = wall_length, 1, wall_width # hollow out

battlement

 xoffset, zoffset = 0, ‐1

 if orientation != "x": # swap dimensions

 w, l = l, w

 w1, l1 = l1, w1

 w2, l2 = l2, w2

 xoffset, zoffset = zoffset, xoffset

 # Wall support

 self.set_blocks(x, y, z, w, h, l, BLOCK_STONE, block_data)

 # Add Battlement

 self.set_blocks(x+xoffset, y+wall_height, z+zoffset,

 w1, h1, l1, BLOCK_STONE, block_data)

 # hollow out battlement

 self.set_blocks(x, y+h+1, z,

 w2, h2, l2, BLOCK_AIR, block_data)

 # create crenellations/merlonations

 if orientation == "x":

 for i in range(1, wall_length, 2):

 self.set_blocks(x+i, y+h+h1, z‐1,

 0, 0, 4, BLOCK_AIR, block_data)

 else:

 for i in range(1, wall_length, 2):

 self.set_blocks(x‐1, y+h+h1, z+i,

 4, 0, 0, BLOCK_AIR, block_data)

BC130 Python For Kids For Dummies �

9781119093107-bc03.indd  BC130� September 15, 2015 7:58 PM

 def make_castle(self, location=None):

 """ Create a castle at the specified location, or at the

player's

 position if none specified"""

 if location is None:

 x, y, z = self.player.getPos()

 x = x+1 # So player is outside

 else:

 x, y, z = location

 Vec3 = minecraft.Vec3 #convenience assignment

 # Terraforming!

 # Clear the area

 self.set_blocks(x‐(TOWER_WIDTH+1), y, z‐(TOWER_WIDTH+1),

 CLEAR_SPACE, CLEAR_SPACE, CLEAR_SPACE,

 block.AIR.id, 0)

 # lay down some bedrock underneath the castle

 self.set_blocks(x, y‐BEDROCK_DEPTH, z,

 CASTLE_SIDE, BEDROCK_HEIGHT, CASTLE_SIDE,

 block.BEDROCK.id, 0)

 # one layer of cobblestone

 self.set_blocks(x, y‐1, z,

 CASTLE_SIDE, 0, CASTLE_SIDE,

 block.COBBLESTONE.id, 0)

 # create all the towers at the location

 self.make_tower(Vec3(x, y, z))

 # now make another two towers ‐ each at the end of each wall

 # assumes length of wall is 40 (actually 41 bc of 0 basing)

 # and width of towers is 4 (actually 5)

 self.make_tower(Vec3(x+TOWER_OFFSET, y, z))

 self.make_tower(Vec3(x, y, z+TOWER_OFFSET))

 # make last tower is diagonally opposite the first

 self.make_tower(Vec3(x+TOWER_OFFSET, y, z+TOWER_OFFSET))

 # now make two walls to attach to the first tower.

 # Starting point of each wall needs to be offset

 # by (width of tower)+1 blocks in the x axis for the

 # first wall and in the z axis for the second wall.

BC131� Bonus Project 3: Minecraft+Py+Pi

9781119093107-bc03.indd  BC131� September 15, 2015 7:58 PM

 self.make_wall(Vec3(x+TOWER_WIDTH+1, y, z+1))

 self.make_wall(Vec3(x+1, y, z+TOWER_WIDTH+1),

 orientation="z")

 # repeat the walls above, but offset them by the

 # tower offset to the z and x axes

 # This is so that the end of the wall meets the side

 # of the tower

 self.make_wall(Vec3(x+TOWER_WIDTH+1, y, z+1+TOWER_OFFSET))

 self.make_wall(Vec3(x+1+TOWER_OFFSET, y, z+TOWER_WIDTH+1),

 orientation="z")

class View(object):

 """Interface to Castle object"""

 def __init__(self, parent=None):

 self.parent = parent

 self.button_drop = Button(self.parent, text='drop')

 self.button_clear = Button(self.parent, text='clear')

 self.button_drop.grid(row=0, column=0)

 self.button_clear.grid(row=0, column=1)

 self.button_show_axes = Button(self.parent, text='Axes +')

 self.button_show_axes.grid(row=1, column=0)

 self.button_hide_axes = Button(self.parent, text='Axes ‐')

 self.button_hide_axes.grid(row=1, column=1)

 self.button_castle = Button(self.parent, text="Castle")

 self.button_castle.grid(row=2, column=0)

Functions Section

Main Section

if __name__ == "__main__":

 root = Tk()

 castle = Castle(parent=root)

 root.mainloop()

BC132 Python For Kids For Dummies �

9781119093107-bc03.indd  BC132� September 15, 2015 7:58 PM

Summary
This project is all about interfacing with another program. You

✓✓ Connected to Minecraft from Python.

✓✓ Posted a chat message to Minecraft.

✓✓ Created and destroyed blocks of different kinds.

✓✓ Got the player’s location and moved it around.

✓✓ Blew stuff up with TNT.

✓✓ Created a helper function to see the axis directions in
Minecraft.

✓✓ Created a helper function to set blocks using relative, rather
than absolute, coordinates.

✓✓ Used the grid geometry manager.

✓✓ Built a whole castle using Python.

